원 UV LED 조명은 사람에게 해를 끼치지 않고 박테리아와 바이러스를 효율적으로 죽입니다.

그림 1: 대부분의 LED는 가시광선을 방출하지만 RIKEN 물리학자들은 극자외선의 좁은 영역에서 방출하고 인간에게는 안전하지만 바이러스와 박테리아에는 치명적인 LED를 만들었습니다. 크레딧: RIKEN

강력한 LED 램프는 사람들을 안전하게 보호하면서 표면을 효율적으로 소독할 수 있습니다.

RIKEN 물리학자들은 항균 및 항바이러스 효과가 있지만 인체에 안전한 고효율 LED 램프를 설계했습니다. 언젠가는 사람들로 가득 찬 방에서 병원체를 죽임으로써 전염병의 그늘에서 벗어나는 데 도움이 될 수 있습니다.

자외선 살균 램프는 박테리아와 바이러스를 죽이는 데 매우 효과적입니다. 사실, 그들은 의료 표면과 기구를 살균하기 위해 병원에서 일상적으로 사용됩니다.

조 마사후미

Masafumi Jo와 두 명의 동료는 전염병으로부터 사회를 보호하는 데 도움이 되는 LED 램프를 설계했습니다. 크레딧: RIKEN

이러한 유형의 램프는 LED를 사용하여 만들 수 있으므로 에너지 효율이 높습니다. 그러나 이러한 LED 조명은 유해한 범위의 자외선을 생성합니다.[{” attribute=””>DNA and therefore cannot be used around people. The search is on to develop efficient LEDs that shine light within a narrow band of far-ultraviolet light that appears to be both good at disinfecting while remaining safe for people.

Germicidal LED lamps that operate in the absence of humans are often made from aluminum, gallium, and nitrogen. By increasing the amount of aluminum they contain, these LEDs can be modified to work in a wavelength region that is safe for humans. This approach has been used before but has resulted in dramatically reduced power.

To work through this issue, three physicists at RIKEN Quantum Optodevice Laboratory, Masafumi Jo, Yuri Itokazu, and Hideki Hirayama, created an LED with a more complex design. They sandwiched together multiple layers, each containing slightly different proportions of aluminum. In addition, in some layers they also added tiny amounts of silicon or magnesium.

This effectively created an obstacle course for electrons, hindering their movement across the material and trapping them for longer in certain areas. This resulted in an increased amount of light emitted by the device and a reduced amount absorbed by it.

The team used computer simulations to model all possible effects to help pin down the ideal design. “We then grew samples to see if it was effective or not,” Jo says. Precisely controlling the thickness of each layer was the biggest experimental challenge. They ended up with an LED operating in the far ultraviolet, with an output power almost ten times higher than their previous best.

The COVID-19 pandemic brought a new consciousness of the importance of being able to eradicate viruses and microbes on surfaces. “We trust that our findings and technologies will be very useful for safeguarding society against this and future pandemics,” says Jo.

Jo adds that the trio will strive to improve their LED’s performance even further. “There’s still much room for improvement in the output power and the power efficiency,” he notes.

Reference: “Milliwatt-power far-UVC AlGaN LEDs on sapphire substrates” by Masafumi Jo, Yuri Itokazu and Hideki Hirayama, 25 May 2022, Applied Physics Letters.
DOI: 10.1063/5.0088454

READ  토성의 달 엔셀라두스의 바다가 물결 치는 것처럼 보입니다

답글 남기기

이메일 주소는 공개되지 않습니다.